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Abstract
Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in
agricultural systems, but are limited by perceived conflicts between economic and ecosystem service
goals and a lack of tools enabling effective operationalmanagement. Here we use Iowa—an
agriculturally homogeneous state representative of theMaize Belt—to demonstrate an economic
rationale for cropland diversification at the subfield scale.We used a novel computational framework
that integrates disparate but publicly available data tomap∼3.3million unique potentialmanagement
polygons (9.3Mha) and reveal subfield opportunities to increase overallfield profitability.We
analyzed subfield profitability formaize/soybean fields during 2010–2013—four of themost
profitable years in recent history—and projected results for 2015.While cropland operating at a loss of
US$ 250 ha−1 ormorewas negligible between 2010 and 2013 at 18 000–190 000 ha (<2%of row-crop
land), the extent of highly unprofitable land increased to 2.5Mha, or 27%of row-crop land, in the
2015 projection. Aggregation of these areas to the township level revealed ‘hotspots’ for potential
management change inWestern, Central, andNortheast Iowa. In these least profitable areas,
incorporating conservationmanagement that breaks even (e.g., planting low-input perennials), into
low-yielding portions offields could increase overall cropland profitability by 80%. This approach is
applicable to the broader region and differs substantially from the status quo of ‘top-down’ land
management for conservation by harnessing private interest to align profitability with the production
of ecosystem services.

1. Introduction

In 2008, Donner and Kucharik (2008) predicted the
Renewable Fuel Standard’s (RFS2)mandate for biofuel
production in the US would stimulate shifts of crop
and conservation land to maize for ethanol produc-
tion, resulting in a net expansion of maize acreage and
a net increase in N export from the Mississippi River
Basin. Scientists also predicted declines in soil carbon
(Gelfand et al 2011), biocontrol services (Landis
et al 2008), and pollinators and bird species of

conservation concern in the Upper Midwest (Meehan
et al 2010, Bennett et al 2014) with limited impact on
overall emissions of heat-trapping gases (Hill
et al 2006). Recently, Lark et al (2015) showed record
grain prices and changing agriculture policy in the last
decade have indeed led to net expansion of cropland,
largely at the expense of forage and conservation land.
Their analysis showed that between 2008 and 2012,
2.97 million ha were converted to cropland, most
commonly from grassland (2.3 million ha), shrub and
forest land (0.32million ha), andwetland (0.06million
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ha) to maize, wheat, or soybean; much of this gross
cropland expansion occurred in theUSMaize Belt.

Many have demonstrated that incorporating per-
ennial vegetation can disproportionately enhance eco-
system services from extensively managed croplands,
including erosion control, improvements in water
quality, and pest control (Helmers et al 2012, Gopa-
lakrishnan et al 2012, Liebman et al 2013, Meehan
et al 2013, Asbjornsen et al 2014, Daigh et al 2014), but
usually at an economic penalty under current market
and policy conditions (Manatt et al 2013, Guerry
et al 2015). Top-down land management schemes are
widespread (Osmond et al 2012) but have had limited
implementation success in theMaize Belt because they
do not align with many social and economic con-
straints, notably land tenure (Morton and
Brown 2011). New insight enabled by public data and
precision agriculture technology could possibly
remove these constraints, and actually allow economic
motivation to drive conservation goals.

High resolution yield monitoring associated with
precision agriculture shows that even high yielding
fields include areas of low productivity due to erosion,
water logging, or poor soil quality (Muth and Bry-
den 2012). Case studies also show that subfield areas of
lowest profitability coincide with those of highest
environmental risks (Lerch et al 2005, Muth 2014).
However, no larger scale studies have been published
on the combined goal of providing economic benefits
to farmers and improving ecosystem services. While
addressing subfield heterogeneity in yield through
precision agriculture is already widely adopted within
the agricultural community, the concept is being
expanded to consider improved ecosystem services
through ‘precision conservation’ (Berry et al 2005).

Using the lens of precision conservation, here we
develop a framework for farmers, other private enter-
prises, and public entities to identify within-field
variability of cropland profitability and understand its
implication for management decisions. A spatially
explicit, subfield level accounting model is applied to
(1) determine profit variability within individual
maize/soybean fields and (2) identify hot spots where
low profitability provides a compelling case for man-
agement change.We use the state of Iowa to depict this
framework, although the concept is more broadly
applicable to extensive agricultural regionsworldwide.

Iowa’s agricultural homogeneity makes it a good
proxy for theMidwestmaize/soy agroecosystem—the
largest US agricultural region. Nearly 8% of all US
prime cropland is in Iowa (USDA 2015a), which
includes 12.3 million ha devoted to crop production
and 9.5 million ha dedicated to maize and soybean
(NASS 2015, RFA 2015). The state has been plagued by
poor water quality for decades (Alexander et al 2008,
Iowa Department of Natural Resources 2012), and the
recent Iowa Nutrient Reduction Strategy (2013) spot-
lights the need to incorporate more perennial vegeta-
tion within the agricultural landscape, either as part of

crop rotations or as semi-permanent cover, to meet
state and national goals for water quality improvement
in the Mississippi River Basin. An opportunity to
improve farm profitability can encourage farmers to
grow less intensively managed perennial crops on tar-
geted areas currently managed in row crops to meet
the strategy’s target of 41% reduction in N and 29%
reduction in P to surface waters. The state also figures
prominently into the national pollinator health strat-
egy (Pollinator Health Task Force 2015), especially
through providing breeding and nectaring habitat for
the decliningmonarch butterfly.

We compare 2010–2013, four of the most profit-
able years in recent history, with a projection for 2015,
when commodity markets have moderated from
recent highs. We specifically investigate whether sub-
stantial economic rationale exists for diversification of
extensively managed cropland. If identified, financial
motivation to implement conservation management
practices in low-yielding portions of fields could drive
broader societal, economic, and environmental
benefits.

2.Methods

We analyzed subfield profitability of Iowa farmland
continuously in either maize or soybean production
between 2010 and 2013. We chose 2010–2013 because
they include some of the most profitable crop years on
record for the Maize Belt (Johanns and Plastina 2014),
and compared them to a scenario projected for 2015,
when grain markets have moderated. We drew on
publicly available data to obtain information on field
boundaries and land cover, soil properties, yields, cash
rents, crop production costs, and grain prices (table 1
and S1). As outlined below, wemodeled cash rents and
yields by differentiating survey data of county averages
into high resolution spatialmaps.

2.1. Spatial data
Field boundaries were obtained from the 2008 USDA
Farm Service Agency common land unit (CLU) layer
(USDA 2008). Crop-specific land cover was identified
with the USDANational Agricultural Statistics Service
cropland data layer (CDL), a spatially-explicit raster
data layer indicating the annual land cover at 30 m
resolution across the conterminous US based on
satellite imagery (USDA 2014). Fields were assigned a
single maize or soybean crop from 2010 to 2013 using
the CLU-CDL intersection from that year to identify
the crop occupying the greatest area within the field
(CLU). If a crop or land cover other than maize or
soybeans was determined to be dominant in any year,
the field was eliminated from the analysis. This
spatially-explicit approach allowed us to focus on
dedicated maize/soybean land, capturing actual dis-
tribution of maize–soybean rotation patterns in Iowa
(continuous maize, maize–soybean rotation, and
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soybean following two or three years of maize).
Although some land was excluded, 80% of cropland
(9.3 Mha) in Iowamet this constraint.

To capture the influence of subfield variations in
soil properties on yield and cash rent, we then inte-
grated the National Soil Survey Geographic
(SSURGO) Database (NRCS 2013) into the analysis.
SSURGO map units were intersected with CLU
boundaries, resulting in∼3.3 million unique soil-field
polygons for Iowa.

2.2. Calculation of profitability
For each soil-field polygon, we calculated profitability
according to:

P Y RGP CP , 1ijk ijk ij ijk jl( ) ( ) ( )= ´ - +

where Pijk is the profitability of crop i in year j for soil-
field polygon k, Yijk is the yield for crop i in year j on
soil-field polygon k, GPij is the grain price for crop i
in year j, CPijk is the crop production cost for crop i in
year j on soil-field polygon k, and Rjl is the cash rent
in year j on field l. Equation (1) represents net
operating profit for a land-renting farmer. For a land-
owning farmer, equation (1)measures operating profit
less what the farmer could have received had the land
been rented to another farmer.

2.3. Yield estimate
Maize and soybean yields were estimated for each
unique soil-field polygon. The Iowa Soil Properties
and Interpretations Database (ISPAID, Miller
et al 2010) includes estimates of typical maize yields on
each soil map unit (SMU). An SMU combines soil
type, slope class, and erosion phase. Parent material,
slope, erosion, natural drainage class, subsoil charac-
teristics, flooding potential, and weather conditions
are factored in to project potential maize yields as an
indicator of inherent crop production capacity. Soy-
bean yields are calculated from a linearmodification of
maize yields (Miller et al 2010). In general, these yield
estimates are higher than actual yields reported by the
USDA Agricultural Statistics Service (NASS 2015). To
achieve more realistic estimates, we normalized
ISPAID results with the annual reported county
average yields for maize and soybean according to

Bonner et al (2014). This approach provided a dataset
of high spatial resolution reflecting yield variations of
the analyzed years. For our 2015 projection, we
normalized the ISPAID results with county yield
trends produced by the United States Department of
Agriculture’s Risk Management Agency
(USDA2015b).

2.4. Grain prices
Grain prices for 2010–2013 were taken from monthly
commodity price listings for Iowa (Johanns 2015) and
averaged over each marketing year, starting on 1
September of each year and ending on 31August of the
following year. For the 2015 projection, the season
average maize and soybean prices, as projected in the
World Agricultural Supply and Demand Estimates
report ofMay 2015 (USDA2015c), were used.

2.5. Crop production costs and cash rents
Crop production costs were calculated using net
operation costs with local standard practices from the
Iowa State University Extension and Outreach Ag
Decision Maker Tool, which is generated from annual
Iowa FarmBusiness Association reports, data collected
by Iowa State University, and a survey of agricultural
cooperatives and other suppliers in Iowa (Plas-
tina 2015). Representative values for maize following
maize, maize following soybeans, and soybeans were
used according to the crop in the current and
preceding year for each CLU.We assumed the seeding
rate for maize at 74 130 seeds ha−1 (30 000 seeds ac−1)
and for soybeans at 346 000 seeds ha−1 (140 000 seeds
ac−1). P application was assumed to be 69.5 kg ha−1

(62 lbs ac−1), 76.2 kg ha−1 (68 lbs ac−1), and
44.8 kg ha−1 (40 lbs ac−1) for maize following maize,
maize following soybeans, and soybeans, respectively.
K application was set at 56 kg ha−1 (50 lbs ac−1),
60.5 kg ha−1 (54 lbs ac−1), and 84 kg ha−1

(75 lbs ac−1) for maize following maize, maize follow-
ing soybeans, and soybeans, respectively. N applica-
tion rates for maize production were calculated
according to the Regional Nitrogen Rate Guidelines
(Sawyer et al 2015) with the corn nitrogen rate
calculator to find the most profitable N rate based on

Table 1.A summary of data used in the analyses. ‘Crop type’ refers towhich crop (maize or soybean)was present in a field.

Input variables 2010–2013 2015

Crop type As inCDL 2010–2013 As inCDL 2013

Yields From ISPAID, adjusted to 2010–2013NASS county

averages

From ISPAID, adjusted to 2015 county yield trends

Grain prices Annual average price for 2010–2013marketing years

(September–August)
Season averagemaize and soybean price projected for

2015 in theWorldAgricultural Supply andDemand

Estimates report

Cash rental rates Derived fromCSR, adjusted to 2010–2013 rental

rates survey

Derived fromCSR, adjusted to 2015 rental rates survey

Crop production

costs

Crop budgets estimated by ISUExtension andOut-

reachAgDecisionMaker Tool (Plastina 2015) for
2010–2013

Crop budgets estimated by ISUExtension andOutreach

AgDecisionMaker Tool (Plastina 2015) for 2015
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fertilizer cost and maize price in each year. Rates
ranged between 204 kg ha−1 (182 lbs ac−1) and
230.9 kg ha−1 (206 lbs ac−1) for maize following
maize, and between 144.6 kg ha−1 (129 lbs ac−1) and
169.2 kg ha−1 (151 lbs ac−1) for maize following soy-
beans. Harvest machinery costs were scaled with
modeled yields. For cash rents, we calculated a
coefficient D for each county m (table S2) to describe
the increase in cash rent per unit increase in corn
suitability rating (CSR):

D R CSR , 2m m m ( )= /

where Rm is the average cash rental rate for countym
reported by farmers, landowners, agricultural lenders,
and professional farm managers in an annual survey
(Edwards et al 2015), and CSRm is the area weighted
mean of CSR for county m from the USDA National
Resources Conservation Service Soil Survey
(NRCS 2013). Using this coefficient (table S2), we
calculated a cash rental rate for each soil-field polygon
k as:

R D CSR 3k m k ( )= ´

where CSRk is the CSR value of soil-field polygon k.
Since cash rents are paid on a field basis, we calculated
area weighted averages for each CLU. A comparison
demonstrated that our calculated cash rent distribu-
tion agreed with that of the survey data (figure S1).
Crop insurance premiums are highly variable depend-
ing on the level of coverage purchased and were not
included in the crop budgets. For each year, crop
production costs were linked with spatial data based
on crop type and yield (table 1). Because maize and
soybean are commonly annually rotated and the 2015
CDL will not be released until 2016, we used the 2013
CDL for the 2015 projection.

To visualize spatial variation in maize and soybean
yields, yields for each soil-field polygonwere separated
by crop and area weighted averages were calculated for
each township (figures S2 and S3). Likewise, area
weighted township means of cash rent and crop pro-
duction cost were calculated and mapped (figures S4
and S5). To visualize the percentage of each township
area that was in row crop production from 2010 to
2013, CLU area was summed for each township and
divided by township total area (figure S6). The propor-
tion of maize to soybean cropland in each township
was calculated from the CLU areas and the crop cover
in each year (figure S7). Area weighted histograms of
cost and revenue (figure 1) and yield (figure S8) were
created after rounding the raw data (cost and revenue
to zero decimals, yields to two decimals) and aggregat-
ing to equal values to reduce the number of records.

2.6. Scenarios and sensitivity analysis
We visualized profitability results for the whole state
for the retrospective (2010–2013) and projected
(2015) analyses as raster maps of 100 m2 resolution
using ArcGIS 10 (ESRI 2015, Redlands, CA). We
focused on cropland that loses �US$ 250 ha−1, as

potential target areas for diversification. The �US$
250 ha−1 loss cut-off was deemed appropriate for a
conservative assumption that a farmer is likely to
pursue management alternatives on land that consis-
tently loses this much each year. To reveal hotspots of
low profitability, we displayed numbers of hectares
operating at �US$ −250 ha−1 per township in maps
by joining tables queried from the PostgreSQL data-
base with a geospatial layer of political township
boundaries of Iowa, using the QGIS Open Source
Geographic Information System. To assign each CLU
to a township, the CLU layer was intersected with the
political township boundaries. CLUs that overlapped
two or more townships were assigned to the township
that they overlapped with their largest portion. Poly-
gons with profit losses �US$ 250 ha−1 were selected
and their areas summed for each township. Because
some of the townships, many of them municipalities,
included very few hectares of CLUs in row crop, we
filtered out political units that contained less than
700 ha in row crop production. These were not
considered representative of farmland area in Iowa.
For the least profitable townships, defined by an area
of more than 3 500 ha that loses �US$ 250 ha−1, we
ran a scenario in which all areas losing�US$ 250 ha−1

are enrolled in a government program, such as the
USDA Agricultural Conservation Easement Program,
Conservation Reserve Program, or Pollinator Habitat
Planting program, allowing previously unprofitable
parcels to break even. To assess the impact of different
variables on profitability, we altered crop production
costs, yields, and commodity prices in the 2015
projection. For crop production costs, we changed the
2015 maize production cost by±US$ 120 ha−1 in
steps of US$ 30, and soybean production costs
by±US$ 80 ha−1 in steps of US$ 20. These ranges
were derived frommaximum changes in crop produc-
tion costs from 2010 to 2015 based on average yields
observed in these crops. The impact of yield on
profitability was assessed by changing the yields for
maize and soybean by±30% in steps of 10% based on
the trend projections for 2015. Commodity prices
were simultaneously increased from US$ 0.1 kg−1 to
US$ 0.3 kg−1 (US$ 2.49 bu−1 toUS$ 7.64 bu−1; maize)
and from US$ 0.27 kg−1 to US$ 0.57 kg−1 (US$
7.37 bu−1 to US$ 15.52 bu−1; soybeans) by steps of US
$ 0.04 kg−1 (maize) and US$ 0.06 kg−1 (soybeans),
respectively. For each step of the sensitivity analyses,
profitability for each soil-field polygon was calculated
as described above, and unprofitable farmland losing
�US$ 250 ha−1 was summed at the state level.

3. Results

The retrospective analysis of 2010–2013 reveals spatial
and temporal variability in profitability (figures 2 and
3). An interactive map providing the ability to zoom in
on individual fields is accessible at http://mesonet.
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agron.iastate.edu/GIS/apps/profit/. Mean profitabil-
ity was highest in 2011 at US$ 880 ha−1 and lowest in
2013 at US$ 103 ha−1. Overall, the extent of highly
unprofitable cropland, or cropland losing US$
250 ha−1, increased in each consecutive year from
2011 through 2013. While the extent of highly
unprofitable croplands was negligible in 2010 and
2011 at 45 338 and 17 874 ha, respectively, these areas
increased to 189 620 ha in 2012 and 1 023 035 ha in
2013. The spatial distribution of highly unprofitable
cropland also varied over time.While largely relegated
to large river floodplains and the margins of the state
in 2010–2012, by 2013 extensive areas of highly
unprofitable cropland were found in most counties
and were particularly concentrated in Central Iowa;

specifically, Carroll, Hamilton, and StoryCounty, with
56 868 ha, 60 614 ha, and 52 576 ha, respectively
(figure 2 and S9).

Temporal and spatial variation in profitability
between 2010 and 2013 was a function of grain price,
yield, cash rental rate, crop production cost, andmaize
to soybean ratio (table 2). Following historic highs in
2011 and 2012, maize price decreased in 2013. Soy-
bean price showed a similar pattern. While farmers
benefited from high yields in 2011, low yields asso-
ciated with a persistent drought (Khong et al 2015)
were evident in both crops in the following years
(figures S2, S3, and S8). Area weighted township aver-
age cash rents ranged from US$ 271 ha−1 to US$
955 ha−1 across Iowa in these four years and exhibited

Figure 1.Areaweighted distributions ofmodeled cash rents, crop production costs, and crop revenues in Iowa.Data are grouped into
bins of US$ 20 ha−1.
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substantial variability (figure S4); the lowest rents were
found in Southern Iowa and the highest rents were
found inWest Central, Central, and East Central Iowa.
Cash rents steadily increased from 2010 to 2013
(figure 1), increasing US$ 214 ha−1 on average over
this period. Overall crop production costs were con-
sistently highest in North and East central Iowa and
lowest in the South (figure S5).While production costs
for soybean have stayed relatively stable in the four
years, those for maize following maize increased con-
siderably from 2010 to 2013 (figure 1). Revenues (yield
x grain price) decreased from an average of US$
2731 ha−1 and US$ 1686 ha−1 in 2011 to US$
1861 ha−1 and US$ 1490 ha−1 in 2013 for maize and
soybeans, respectively (figure 1). The ratio of land
planted in maize to that planted in soybeans increased
slightly from 2010 to 2011 and then stayed at a rela-
tively stable level of 1.5 (table 2,figure S7).

The projection for 2015 resulted in a mean profit-
ability of US$−158 ha−1, withmost areas operating at
US$ 200 ha−1 or less (figures 2 and 3). The total area

operating at and below US$ −250 ha−1 is
2 513 915 ha, or 27% of all cropland in Iowa (figure 3).
By comparison, mean yields and yield variability in
2015 were comparable to the 2011 value and distribu-
tions (table 2, figures S2 and S3). Row crops were plan-
ted on between 4% and 100% of the farmland in any
given township in 2010–2015, varying greatly with
geographic location (figure S6).

A closer look at three exemplary townships across
a diagonal transect of the state reveals the granularity
of the subfield analysis (Providence Township in
Buena Vista County, Beaver Township in Boone
County, and Crawford Township in Washington
County, figure 4). Profitability can be differentiated by
crop type on the majority of cropland, with soybean
being more profitable than maize. Contrastingly,
many fields situated close to waterways (Beaver Creek
in Providence Township, North RaccoonRiver in Bea-
ver Township, and East Fork Crooked Creek in Craw-
ford) show high within-field variability and include
areas losing>US$ 500 ha−1.

Profitability [US$ ha-1]
< -250
(-250) - (-100)
(-100) - 0 
0 - 200
200 - 500
500 - 1000
> 1000
no data2015

2012 2013

20112010

(projected)

0 50 100 150 km

Figure 2.Distribution of subfield Iowa cropland profitability, 2010–2013, and projected profitability for 2015. Profitability was only
calculated for cropfields inmaize or soybeans in all four years (2010–2013). Other areas are shown as gray.
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By summing these highly unprofitable areas for all
townships, regions with a high density of unprofitable
farmland were identified as ‘hot spots’ for manage-
ment change (figure 5). A typically sized township cov-
ers 9323 ha (36 mi2); highly unprofitable areas ranged
between 78 and 7694 ha per township (1%–66% of
total township area), and a total of 104 townships con-
tained more than 3500 ha of highly unprofitable land,
adding up to 447 436 ha (55% of the cropland in the
hot spots and almost 5% of all cropland in Iowa).
While hot spots were scattered throughout the state
(figure 5), our analysis reveals aggregations along the
Missouri River Alluvial Plain and Loess Hills in the
West, on the edges of the Des Moines Lobe landform
in Central Iowa, and on the Iowan surface in the East
(figure S10). These comprise areas to target for man-
agement change based on purely economic rationale.

If land operating at  US$−250 ha−1 were taken out
of row crop production and placed into break-even
management, such as provided by existing govern-
ment programs, the profitability of these soil-field
polygons becomes US$ 0 and the average profitability
of the 104 hot spots townships is raised by 80%, from
US$−272.87 ha−1 toUS$−54.53 ha−1.

3.1. Sensitivity analysis
From the baseline of ∼2.5 Mha of highly unprofitable
farmland in 2015, an increase in crop production cost
of US$ 60 ha−1 (maize) and US$ 40 ha−1 (soybean)
increases the amount of highly unprofitable land by
44% to 3.6 Mha, whereas a decrease by the same
amounts decreases the area by 36% to 1.6 Mha
(figure 6(a)). Profitability is even more sensitive to

Figure 3.Distribution of Iowa cropland profitability, 2010–2013, and projected profitability for 2015. The vertical dashed and dotted
lines respectivelymark the profitability cut-offs ofUS$−250 ha−1 andUS$ 0 ha−1.
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Table 2. Summary statistics for calculation of Iowa cropland profitability, 2010–2013, and projected profitability for 2015.

2010 2011 2012 2013 2015 (projected)

Maize price (US$ kg−1) (US$bushel−1)a 0.21 (5.46) 0.25 (6.35) 0.27 (6.94) 0.18 (4.51) 0.14b (3.50)
Soybean price (US$ kg−1) (US$ bushel−1)a 0.44 (12.08) 0.48 (13.08) 0.53 (14.54) 0.49 (13.38) 0.33b (9.00)
Averagemaize yield (Mg ha−1)c±StDev 10.43±2.01 10.91±1.72 8.65±1.68 10.46±1.7 10.91±1.7
Average soybean yield (Mg ha−1)c±StDev 3.47±0.49 3.51±0.55 3.02±0.55 3.02±0.54 3.43±0.54
Average cash rental rates (US$ ha−1)±StDev 446.46±92.58 519.88±106.06 617.39±139.47 660.25±146.53 635.64±137.79
Average crop production cost (US$ ha−1)d±StDev 747.13±222.45 872.27±291.30 880.12±268.48 897.50±331.44 861.16±178.64
Ratio of land inmaize versus land in soybean 1.35 1.55 1.54 1.46 1.46e

a Average of themarketing year (01 September–31August) (Johanns 2015).
b Projected average prices for the season 2015/16 (USDA2015b).
c County average yields normalized to ISPAID estimates±standard deviation.
d Cash rent and crop insurance premiumnot included. Area-weighted average of crop production cost±standard deviation.
e Crop distribution is assumed to be similar to 2013.

8

E
nviron.R

es.Lett.11
(2016)014009



yield variability (figure 6(b)) and to changes in
commodity prices (figure 6(c)).

4.Discussion

The results presented here project drastic profit
reduction for Iowa farmers in 2015. Using crop

production cost estimates and trend yields published
by Iowa State University Extension, Hart (2015) has
also projected negative gross profit margins for maize
and soybeans in Iowa beginning July 2014 and
decreasing below −200 and −300 US$ ha−1 for
soybean and maize, respectively, by April 2015. Our
subfield analysis bolsters Hart’s results with a spatially
explicit expression of profit risk.

Figure 4. Subfield profitability projection in three exemplary townships in Iowa in 2015. Gray lines represent boundaries between soil-
field polygons. Onefield (common land unit (CLU)) for each township is enlarged for visibility.
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According to our analysis, some farmland oper-
ated at a loss even in economically favorable years. The
low yields in 2012 were compensated by high grain
prices, but in 2013, decreased grain prices, increased
land rent and unfavorable yields on the Des Moines
Lobe caused farmers to lose money on large areas.
Although cash rental rates followed the downward
trend of grain prices in 2015, they did not fall enough
to compensate for substantial losses caused by

decreased revenue. Analysis of low profitability ‘hot-
spots’ (figure 5) reveals areas that—according to our
generalized approach—are poorly adapted to the cur-
rent market conditions. Along the Missouri River
Alluvial Plain in Western Iowa, the edges of the Des
Moines Lobe in Central Iowa, and the Iowan Surface
in Eastern Iowa (figure S10), farmland in row crop
operates to a large extent below a favorable profit, sug-
gesting there is an economic rationale for

Figure 5.Projected distribution of Iowa cropland losing US$ 250 ha−1 for 2015 aggregated by township (an average township is
9 323 ha) in%of total township area.Hatch lines indicate ‘hotspot’ townships with 3500 ha of highly unprofitable land.

Figure 6.Changes in Iowa cropland area losing US$ 250 ha−1 with changing crop production cost (a), yields (b), and commodity
price (c). (a)The 2015maize production cost (marked by the dashed line)was changed US$ 120 ha−1 by steps ofUS$ 30, and the
soybean production costs was changed±US$ 80 by steps ofUS$ 20. (b)The 2015 yields (indicated by the dashed line)were
changed±30%by steps of 10%. Reducing yields by 10% (comparable to 2012 levels at 79% and 88%of 2015maize and soybean
yields, respectively)would increase highly unprofitable area by> 100%.A yield as in 2011 (100% and 102%of 2015maize and
soybean yields, respectively)would onlymarginally decrease highly unprofitable area. (c)Commodity prices were increased fromUS$
0.1 kg−1 toUS$ 0.3 kg−1 by steps of US$ 0.04 kg−1 (maize) and fromUS$ 0.27 kg−1 toUS$ 0.57 kg−1 by steps ofUS$ 0.06 kg−1

(soybeans). The dashed linemarks themaize and soybean price projected for 2015 (US$ 0.14 kg−1 andUS$ 0.33 kg−1, respectively).
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management changes in these areas. If shifted to man-
agement that at least breaks even, most likely to be
achieved by planting low-input perennial cover such
as brome, fescue, or prairie and potentially enrolling in
a government program (Tyndall et al 2013), farmers
could reduce costs on low profit areas and mitigate
overall profit loss. As an example, Tyndall et al (2013)
calculate a cost of 80–124 US$ ha−1 yr−1 for prairie
reconstruction when enrolled in the Conservation
Reserve Program, depending on cash rental rates.
Planting subfield areas into brome or fescue would
decrease establishment costs. Dedicated perennial
energy crops such as switchgrass or giant miscanthus
could extend the range of possible management
options. Such perennial crops have higher input costs
but also potential revenue from biomass (Manatt
et al 2013). Increases in ecosystem services would
depend on, and be concomitant with, the type ofman-
agement implemented (Hatfield et al 2009, Jones and
Schilling 2011, Smith et al 2013, Asbjornsen et al 2014;
table S3).

The rationale for cropland diversification may
become even stronger under a scenario of future cli-
mate change. Weather patterns have become more
variable in recent decades with longer,more severe wet
and dry periods and more extreme rain events (East-
erling et al 2000). Overall yields are expected to
decrease with the expected increase in temperature
(Walthall et al 2012, Urban et al 2015), resulting in an
expansion of highly unprofitable areas.While our sen-
sitivity analysis for yield does not incorporate the
increase in grain prices that will to some extent com-
pensate for systemic crop shortfalls, it also does not
account for the increasing value of soil if current rates
of erosion are not checked (Cruse et al 2013).

We applied simple accounting for input costs and
revenues and excluded government insurance and
subsidy programs from the main analysis. Although
the 2015 scenario includes a variety of input data, there
are limitations to predictability. For example, we used
the CDL from 2013 as a proxy for 2015 because infor-
mation on this year’s crop cover was not available.
Some fields may have been taken out of maize or soy-
bean production in the two-year intervening period by
farmers and other private enterprises due to decreas-
ing revenue expectation. While some such transitions
are likely to have occurred their number and influence
is judged minor as, according to national data, the
total area planted in maize and soybean has not chan-
ged between 2013 and 2015 (NASS 2015). We also
simplified our analysis by assigning cash rents to each
field, regardless of whether it is owned or rented by the
land manager. In case of ownership, the cash rent
represents the land loan payment, or if owned out-
right, the opportunity cost. Data on regional manage-
ment variation are not available but would give amore
realistic representation of crop production costs.
Yields and cash rents were derived from county avera-
ges, creating a ‘county effect’ that overestimates the

differences between neighboring counties. The size of
highly unprofitable land area is very sensitive to yield,
which is management and weather dependent and
therefore highly uncertain. In the future we expect to
further expand the model framework to integrate a
crop model and thereby more fully account for these
uncertainties. Furthermore, additional costs (e.g.,
reduced machinery efficiency) and long-term benefits
(e.g., soil-building) for field portions remaining in row
crop are not accounted for.

Finally, we did not include crop insurance, though
it is an important mechanism for maintaining farm-
level profitability, because we could not easily account
for the diversity of instruments and heterogeneity in
their adoption by farmers. Because more than two
thirds of crop insurance payments are tax-funded
(Babcock 2013), our analysis highlights the public’s
role in maintaining private profits in the US Maize
Belt. It also highlights the economic efficiency that
could be gained by insurers if more spatially precise
information on yields and subfield profit losses were to
be incorporated into insurance instruments. At pre-
sent, crop insurance is paid for in aggregate across
multiple fields comprising a farm. We assume current
legislation that incentivises high-input farming
through crop insurance and externalized environ-
mental costs to be the main barrier that prevents the
implementation more cost effective management
options.

5. Conclusions

Public pressure on agricultural industries and legisla-
tors is increasing in Iowa and elsewhere, calling for
improved ecosystem services from agricultural land-
scapes; achieving this goal will require cropland
diversification (Iowa Nutrient Reduction Strat-
egy 2013, Pollinator Health Task Force 2015). Our
novel high resolution computational framework offers
a powerful economic tool that lays the ground for
subfield management to enhance cropland diversity
and mitigate environmental risk. Farmers and other
land managers have an inherent incentive to shore up
profitability by managing lower performing areas of
their cropland less intensively, thereby achieving a
more sustainable farm operation in both economic
and environmental terms. The framework could
become a robust prediction tool for individual farmers
and other land managers by incorporating their input
data on yield expectations, cash rents, and production
costs. Incorporating budgets for different manage-
ment options would allow these decision makers to
develop alternative scenarios and more precisely opt-
imize their inputs and outputs. While our initial
analysis is focused on Iowa, this approach is applicable
to the broader region and differs substantially from the
status-quo of ‘top-down’ land management for
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conservation by harnessing private interest to align
profitability with the production of ecosystem
services.
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